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Abstract — The SUNY solar irradiance forecast model is 
implemented in the SolarAnywhere® platform. In this article, we 
evaluate its latest version and present a fully independent 
validation for climatically distinct individual US locations as well 
as one extended region. 

In addition to standard performance metrics such as mean 
absolute error or forecast skill, we apply a new operational metric 
that quantifies the lowest cost of operationally achieving perfect 
forecasts. This cost represents the amount of solar production 
curtailment and backup storage necessary to correct all 
over/under-prediction situations. This perfect forecast metric 
applies a recently developed algorithm to optimally transform 
intermittent renewable power generation into firm power 
generation with the optimal – least-cost – amount of curtailment 
and energy storage. 

We discuss how perfect forecast logistics can gradually evolve 
and scale up into firm solar power generation logistics, with the 
objective of cost-optimally displacing conventional [dispatchable] 
power generation. 

Index Terms —Irradiance, solar forecasting, PV fleet 
forecasting, firm power generation. 
 

I. FORECAST MODELS  

We analyze the latest version of the SUNY model as well as 
its four underlying Numerical Weather Prediction (NWP) 
models: HRRR [1], NDFD [2], GFS [3] and ECMWF [4].  In 
addition to these NWP models, the SUNY model blend includes 
satellite-derived cloud motion vector forecasts (CMM). The 
blend is a function of time horizon, solar geometry and 
predicted conditions. The current operational version of this 
model was independently evaluated by EPRI in 2017 and found 
to perform best among thirteen US forecast providers [5]. 

Here, we evaluate a beta version of the model that evolves 
the model’s blend over time to locally capture the evolution of 
the relative performance of its underlying models.  

II. PERFORMANCE EVALUATION  

Performance is evaluated for point-specific locations, as well 
as for a fleet of sixteen locations in California. The evaluation 

period spans 16 months from January 2016 to April 2017. Out 
of this period, we analyzed ~ 11.5 months’ worth of data when 
all models were present. 

We consider three logistically important time horizons: 1, 3, 
and 24 hours ahead. 

All validations are fully independent – i.e., for the SUNY 
model, the validation data are entirely distinct from the data 
used for blend optimization.  

The seven SURFRAD network stations that span a wide 
range of climatic conditions [6] are used for the site-specific 
validations. 

For the regional validation we consider the aggregated output 
of a 16 identical plants located in each of the state’s climatic 
regions [7] (figure 1), using GHI as proxy for PV production. 
The considered points are located at the barycenter of each 
region. We use SolarAnywhere satellite-derived historical 
irradiances for performance benchmarking. We have 
previously shown that using satellite irradiances is acceptable 
to validate forecasts, yielding error metrics comparable to 
ground measurement validations [8]. In a recent article  [9] we 
further discuss the appropriateness of satellite data for forecast 
validations: we show that while satellite data may be a 
suboptimal reference for single points (under-representing 
short-term variability) they are appropriate for intercomparing 
models, especially as the footprint evolves from single points 
(individual plants) to regions (PV fleets). 

A. Standard Metrics 

Standard metrics include MBE, MAE, RMSE, their relative 
(percent) counterparts normalized to either mean [daytime or 
24-hour] value or nominal capacity, as well as Forecast Skill. 
The latter is determined with respect to smart persistence 
defined in accordance to IEA-SHCP Task 46 proposed practice 
[10] viz. (1) persistence of clear sky index, and (2) definition of 



current conditions as time-integrated over a period equal in 
length to the considered time horizon.   

Here we focus our attention on the often-preferred absolute 
MAE metric and the Forecast Skill. The absolute MAE can be 
easily interpreted in terms of %MAE normalized to nominal 
capacity conditions by dividing by 1,000. 

Absolute MAEs for SURFRAD sites and the California fleet 
are reported in Table I. Forecast skills are reported in Table II. 

 
 
 

TABLE I 
MEAN ABSOLUTE ERRORS 

 
 
 
 
 
 
 
 
 
 

TABLE II 
FORECAST SKILL 

 

 
Fig. 1. Sixteen California Climatic Regions. 

 

Location SUNY
Smart

Persitence
GFS NDFD ECMWF HRRR

GoodwinCreek 43 51 73 78 66 83

Boulder 61 58 79 90 76 81

Sioux Falls 50 44 67 81 63 78

Penn State 53 53 73 78 70 96

Fort peck 47 44 67 79 60 77

Desert Rock 39 39 46 50 43 62

Bondville 47 49 69 78 64 84

SURFRAD MEAN 49 49 68 76 63 80

California Mean 34 39 51 53 45 58

California Fleet 12 17 25 30 19 30

GoodwinCreek 57 95 74 80 67 83

Boulder 68 108 79 90 75 86

Sioux Falls 55 86 69 83 63 83

Penn State 62 99 75 81 70 98

Fort peck 55 79 69 80 60 80

Desert Rock 43 73 48 52 44 64

Bondville 58 95 71 82 66 84

SURFRAD MEAN 57 91 69 78 64 83

California Mean 42 65 52 54 46 66

California Fleet 16 37 26 31 20 35

GoodwinCreek 64 144 79 87 68 na

Boulder 77 122 83 96 78 na

Sioux Falls 66 130 72 84 70 na

Penn State 67 129 77 85 71 na

Fort peck 60 94 72 79 65 na

Desert Rock 47 89 50 55 47 na

Bondville 71 134 81 90 75 na

SURFRAD MEAN 64 120 73 82 68 na

California Mean 46 87 53 57 46 na

California Fleet 19 60 27 32 20 na

 One Hour Ahead      MAE (Wm‐2)

3 Hours Ahead      MAE (Wm‐2)

24 Hours Ahead      MAE (Wm‐2)

 

FORECAST SKILL SUNY GFS NDFD ECMWF HRRR

GoodwinCreek 23% ‐43% ‐41% ‐17% ‐61%

Boulder 4% ‐37% ‐36% ‐19% ‐34%

Sioux Falls ‐1% ‐55% ‐69% ‐32% ‐79%

Penn State 8% ‐28% ‐40% ‐19% ‐68%

Fort peck 4% ‐52% ‐68% ‐31% ‐71%

Desert Rock 12% ‐18% ‐18% ‐3% ‐55%

Bondville 4% ‐40% ‐59% ‐30% ‐69%

SURFRAD MEAN 8% ‐39% ‐46% ‐21% ‐61%

California Mean 21% ‐25% ‐33% ‐4% ‐44%

California Fleet 21% ‐46% ‐113% ‐22% ‐118%

GoodwinCreek 37% 13% 13% 29% 3%

Boulder 36% 17% 18% 29% 15%

Sioux Falls 35% 11% 4% 26% ‐5%

Penn State 38% 23% 14% 30% ‐1%

Fort peck 33% 8% 0% 22% ‐5%

Desert Rock 35% 21% 21% 33% ‐6%

Bondville 39% 19% 8% 31% 5%

SURFRAD MEAN 36% 16% 11% 29% 2%

California Mean 33% 11% 6% 27% ‐16%

California Fleet 54% 33% 4% 45% ‐26%

GoodwinCreek 48% 33% 30% 46% na

Boulder 32% 17% 15% 29% na

Sioux Falls 45% 35% 30% 41% na

Penn State 44% 32% 24% 40% na

Fort peck 35% 15% 14% 27% na

Desert Rock 41% 32% 30% 39% na

Bondville 41% 29% 25% 37% na

SURFRAD MEAN 41% 28% 24% 38% na

California Mean 41% 26% 20% 38% na

California Fleet 66% 55% 34% 64% na

 One Hour Ahead      

3 Hours Ahead  

24 Hours Ahead 



 

Fig. 2.  Mean Absolute Errors for the individual SURFRAD stations 
(top) and for the California Fleet. 

 

Fig. 3.  Mean forecast skill for individual SURFRAD locations (top) 
and for the California Fleet (bottom) 

A sample of the results in Table I and II are respectively 
illustrated in Figures 2 and 3.  

These results are consistent with previous evaluations, with 
ECMWF exhibiting the best performance among the 
underlying NWP models, followed by GFS, NDFD and HRRR. 
The SUNY model is well ahead of the NWPs for short horizons 
(cloud motion advantage), and slightly better than ECMF (its 
major blend component) for longer time horizons. 

The California fleet exhibits considerably reduced MAEs 
compared to individual sites. Whereas individual points in 
California are comparable to Desert Rock (see California mean 
of the 16 points in Table 1), the fleet MAE is reduced by a factor 
of 3 for the SUNY model, achieving  12 Wm-2 for 1 hour ahead 
and 19 Wm-2 for 24 hours ahead (i.e., respectively 1.2% and 
1.9% of installed capacity) 

Results for the forecast skill metric are also consistent with 
our previous findings: the underlying NWP models exhibit a 
negative skill for one hour ahead while this skill becomes 
positives beyond 3-hour time horizons. The SUNY model 
exhibits a positive skill for all horizons, reaching over 40% for 
24 hours ahead forecasts. Interestingly, the skill differential 
between models is amplified for the regional fleet compared to 
individual locations: higher skill for the best models (SUNY is 
66% for 24 hours ahead), lower skill for worst models.  

B. Perfect Forecast Metric 

In a previous article, we had introduced an initial version of 
this metric as the cost of storage necessary to offset any over-
predictions [8]. This initial definition allowed nighttime storage 
recharge (i.e., implying low demand and low-cost electricity 
available at night).  

The metric we apply in this article derives from an 
operationally more robust strategy built on a new algorithm to 
transform intermittent PV or wind generation into firm 
production at lowest cost [11]: this algorithm seeks the 
optimum (least-cost) combination of storage and PV 
oversizing/curtailment to meet a specified load profile with 
100% certainty. This optimum combination depends on the 
relative costs of storage and PV. We consider two scenarios for 
PV and storage; (1) a current utility scale cost scenario with PV 
at $1200 kWac turnkey and storage at $200/kWh of storage 
capacity, and (2) a future (2045-50) utility-scale scenario with 
PV at $400 kWac turnkey and storage at $50/kWh of storage 
capacity. 

The perfect forecast metric can either be expressed in terms 
of additional $/kW above and beyond the cost of unconstrained 
PV, or in terms of levelized cost of energy (LCOE) premium 
above and beyond the LCOE of unconstrained PV. The LCOE 
metric requires one additional input: the weighted average cost 



of capital (WACC) – assumed here to be 3% (representative of 
utility industry [11, 12]).  

In Table III, we present $/kW perfect forecast metric results 
for two sample SURFRAD sites and for the 16-points 
California Fleet. 

 
TABLE III 

PERFECT FORECAST $/KW PREMIUM 

The perfect forecast metric results are interesting on two 
fronts.  

First, operationally perfect 24-hour forecasts for the 16-plant 
fleet can be achieved at a cost of $200/kW with current 
hardware cost conditions and will be reduced to ~ $50/kW with 
anticipated future PV/Storage cost conditions. Perfect forecast 
thus amount to a small financial burden to guarantee 
operational certainty for the grid operator.  

Second, the performance ranking of models is different from 
the standard metrics’. Particularly noteworthy is the better 
performance of persistence relative the underlying NWPs when 
benchmarked with the perfect forecast instead of the MAE 
metric. This ranking difference is illustrated in Figure 4. In this 
figure, the relative performance of each model is gauged against 
the average performance of all the model models across all 
considered locations and time horizons –  a relative 
performance below 100% is better than the mean, and vice 
versa. Whereas persistence scores poorly when using the 
standard MAE as a metric, it bests the reference NWPs when 
using the perfect forecast metric. The blended SUNY blend 
scores very well with both metrics. 

This observed ranking difference between the two metrics 
can be explained as follow: whereas the MAE is driven by the 

error of individual (hourly) forecast events, the perfect forecast 
metric is driven by the accumulation of under- or over-forecast 
conditions. The persistence is better balanced in this respect 
with shorter periods of enduring over/underpredicted 
conditions than the reference NWPS. 

 

Fig. 4.  Comparing model performance ranking across all locations 
and time horizons for standard and perfect forecast metrics. The value 
of 100% amounts to the mean error metric of all 
models/locations/time-horizons. 

 

V.  SCALABILITY TO FIRM POWER GENERATION 

In addition to its use as a metric, perfect forecasting 
constitutes an economically attractive operational strategy for 
both solar producers and grid operators. 

For grid operators, operationally delivering perfect forecasts 
removes all supply-side load imbalance uncertainty. It bypasses 
all missed forecast situations and associated costs, in effect 
eliminating the need for spinning reserves. For producers, this 
would amount to replacing imperfect administrative/regulatory 
penalties – that can evolve rapidly overtime -- by tangible 
hardware costs (PV overbuild and battery). 

However, the real value of perfect forecast lies in its 
scalability to enable firm, effectively dispatchable PV power 
generation. Firm PV power generation (i.e., meeting the grid 
demand 24/7/365 regardless of time of day, time of year and 
weather conditions) is a prerequisite to very high PV 
penetration. The landmark Minnesota Solar Pathway project 
demonstrated that the least-cost means to deliver effectively 
dispatchable PV generation requires overbuilding and 
proactively curtailing PV generation to minimize multi-day 
storage requirements. Results show that below parity firm PV 
power generation is achievable in this not particularly sunny 
northern state if PV systems are overbuilt by 50-100% (hence 
curtailing 33-50% of their output) [11-15]. 

Figure 5 (from [13, 14]) illustrates the results of the algorithm 
applied to the objective of meeting Minnesota’s MISO load 
with 100% certainty using an optimized mix of variable wind 

 

PERFECT FORECAST

METRIC
SUNY

Smart

Persitence
GFS NDFD ECMWF HRRR

Goodwin Creek 414$         182$         1,145$       1,441$       1,281$       2,330$    

Desert Rock 398$         161$         968$          898$          692$          1,197$    

California Fleet 118$         89$           285$          169$          246$          595$       

Goodwin Creek 115$         47$           328$          365$          343$          627$       

Desert Rock 110$         44$           261$          234$          192$          328$       

California Fleet 33$           23$           77$            50$            69$            163$       

Goodwin Creek 589$         489$         1,180$       764$          892$          2,166$    

Desert Rock 560$         434$         1,017$       912$          691$          1,076$    

California Fleet 172$         255$         316$          184$          262$          629$       

Goodwin Creek 164$         130$         339$          220$          251$          567$       

Desert Rock 149$         111$         275$          237$          191$          291$       

California Fleet 47$           71$           86$            54$            77$            173$       

Goodwin Creek 835$         1,645$      1,234$       949$          1,016$       na

Desert Rock 711$         1,208$      1,166$       1,203$       772$          na

California Fleet 199$         629$         441$          363$          224$          na

Goodwin Creek 227$         419$         356$          266$          277$          na

Desert Rock 189$         309$         309$          308$          205$          na

California Fleet 52$           177$         115$          96$            62$            na

24 Hours Ahead Perfect Forecast Metric ($/kW ‐‐ current)

24 Hours Ahead Perfect Forecast Metric ($/kW ‐‐ future)

One Hour  Ahead Perfect Forecast Metric ($/kW ‐‐ current)

One Hour Ahead Perfect Forecast Metric ($/kW ‐‐ future)

3 Hours Ahead Perfect Forecast Metric ($/kW ‐‐ current)

3 Hours Ahead Perfect Forecast Metric ($/kW ‐‐ future)



and solar resources and allowing for a maximum utilization of 
natural gas generation of 5%. The figure assumes utility-scale 
PV wind and battery future cost projections.  

 

 
Fig. 5.  Illustrating the catalyst role of overbuilding/curtailment in 
achieving firm least-cost power generation. Without 
overbuilding/curtailment, unconstrained variable wind/solar 
electricity will certainly achieve [apparent] grid parity (A). However 
transforming this variable renewable generation in effectively 
dispatchable firm power generation capable of meeting demand 100% 
of the time will remain well in excess of grid parity if 
overbuilding/curtailment is avoided because of the quantity of storage 
required to make up for multi-day and seasonal production gaps (B). 
With optimally overbuilt renewables, storage requirements can be 
reduced to the point where firm renewable power generation can 
achieve real grid parity (C), hence effectively displace conventional 
power generation 

Importantly, the operational logistics of least-cost 
dispatchable PV generation – optimized PV overbuilding and 
storage associated with proactive operational PV curtailment -- 
are the same as the logistics of delivering operationally perfect 
forecasts, but on a larger scale (i.e., more storage and 
curtailment). 

Thus, an operational perfect forecasts strategy constitutes a 
low-expense entry-level step and a learning curve toward 
enabling large-scale dispatchable PV power generation capable 
of meeting load demand 24/7/365.  

The transition from perfect forecast to fully dispatchable PV 
can be gradual over time following grid operators’ learning 
curve, PV penetration, and storage/PV costs decreases. 

Figure 6 compares the duty cycles of meeting perfect forecast 
requirements and firm power generation requirements over a 
10-day period. While this duty cycle is considerably heavier in 
the latter case, both involve a transformation of the solar 
resource into a predicted output in the case of perfect forecast 
and into the grid’s load shape in the case of firm power 

generation. Both involve an optimization of storage and 
overbuild/curtailment requirements. 

 

 
Fig. 6.  Comparing a perfect forecast duty cycle (top) to a firm 
power generation duty cycle (bottom).  

In Figure, we 7 illustrates a possible gradual transition of load 
requirements from perfect forecast requirements to firm power 
generation requirements.  

The figure shows the same ten days’ worth of forecasted PV 
production (black line) and the regional TSO load shape (red 
line). A gradual transition from perfect forecast logistics 
(guaranteed load = forecast) to firm power generation logistics 
(guaranteed load = regional load) could occur progressively as 
PV penetration increases while keeping the same operational 
storage/curtailment control logistics, in effect moving from the 
optimum storage/curtailment cost reported in Table III, to the 
optimum firm power generation cost  illustrated in Figure 5.  
For the California fleet this optimum operating point would 
amount to an LCOE target of 3 cents per kWh for 100% 
penetration, fully dispatchable PV. This target cost could be 
further reduced by optimally blending PV with other 
renewables as was shown in Minnesota,  and allowing for a 
small fraction of gas (<5%) to provide load target flexibility. 



 

Fig. 7.  Illustrating a gradual duty-cycle transition from a perfect 
forecast PV target (black line) to a regional load demand profile target 
(red line). 
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