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Abstract — This article introduces a new version of the SUNY solar 
forecast model, as implemented in the software SolarAnywhere®. 
Like the existing version, this new version is intended for direct, 
out-of-the-box application throughout North America without 
requiring training/feedback from measured data. The existing 
version was recently identified by EPRI as most accurate among 
thirteen operational models after an independent evaluation in 
two climatically distinct US regions. This new version shows 
further measurable performance improvements and operational 
functionality with capability of using historical satellite data for 
model training purposes. The advantage of incorporating 
historical satellite data is that it allows this forecast application to 
scale to all sizes of PV systems (large utility-scale down to 
individual rooftop) without the requirement of site-measured 
inputs. This new approach exhibits a 1-5% root mean square error 
(RMSE) improvement over the forecast horizon up to two-days in 
advance. 
Index Terms —solar resource, irradiance, solar forecasting, PV 
fleet forecasting. 

I. INTRODUCTION 

The existing operational SUNY forecast model (Version 4, 
or V4) is based upon an optimized mix of models including a 
satellite-based cloud motion vector (CMV) model, and 
global/regional solar and cloud cover Numerical Weather 
Prediction (NWP) models, [1]. 

Coupled with a PV simulation engine (e.g., [2]), V4 is readily 
deployable on any geographical scale, from single plants to 
dispersed PV fleets, without requiring system data training. It 
is applicable anywhere the underlying NWP and cloud motion 
models are available – i.e., potentially anywhere on the planet. 
Current operational coverage is North America, with planned 
expansions in Asia and South America. 

Out-of-the-box application without localized training is a key 
attribute for distributed fleets where PV system specs exist 
(e.g., from [3]) but where measured quality training data are 

seldom available. However, it is important to stress that this key 
attribute does not preclude model in-situ training if and when 
possible. 

V4 was recently evaluated independently by EPRI at test 
locations in North Carolina and California [4]. It was found to 
be the most accurate operational model among thirteen US-
based models from various providers – noting that several of 
the models evaluated where trained (e.g., via deep machine 
learning) using measured plants data made available by EPRI 
to forecast providers. 

Here we present and evaluate a new SolarAnywhere version 
(V4x) that retains the same philosophy (i.e., readily deployable 
without system data training) but pushes operational accuracy 
further with a better exploitation of operational model input 
data, and utilization of SolarAnywhere historical data [5].  

 
 

 
 
Fig. 1. Results of the EPRI forecast evaluation trial  



 
II. MODEL ENHANCEMENTS  

Site-Independent Enhancement: The existing operational V4 
is derived from an optimized blend of a CMV model, and four 
NWP models – ECMWF, GFS, NDFD and HRRR [1]. The 
blend is a function of time horizon and time of day. The new 
version adds predicted solar conditions as an additional 
optimization input. The new optimum blend is determined 
empirically from 10 months of measured data at seven 
SURFRAD network locations [6]. These locations sample a 
diversity of CONUS climatic environments. 

Location-Specific Improvements: In a recent publication [7], 
we observed that historical satellite-derived irradiances were as 
effective as ground measurements to benchmark forecast 
models, producing comparable error metrics across climatically 
distinct locations and forecast time horizons (Figure 2).  We 
take advantage of this observation as an opportunity to 
regionalize input blend optimization and, as needed, remove 
condition-specific biases. Historical SolarAnywhere data are 
available for long time spans over entire continents and can thus 
be applied to locally optimize forecasts blends and biases in any 
region/location. Of course, this assumes that historical 
SolarAnywhere data are accurate enough and fully 
representative of the considered region/location. A growing 
body of evidence indicates that this is the case (e.g., [8]). 

 
Fig. 2.  Comparing satellite and ground benchmarked forecast 
RMSE statistics across all time horizons at multiple locations [7] 
 

Probabilistic functionality: In addition to deterministic 
performance improvements, V4.x also produces probabilistic 
information. The benefit of historical satellite irradiance data is 
the applicability for probabilistic forecasting without the 
requirement of ground-based measurement.  Each deterministic 
forecast produces a probabilistic envelope from which 
operational probability quantiles can readily be extracted. The 
probabilistic envelopes are experience based, i.e., they are 
derived empirically from multi-site validations using either 
ground measurements or historical satellite data -- we use the 

same 10-month, seven-SURFRAD site sample as in the above 
blend optimization to derive the probabilistic envelopes.  

Experimental Data: The data assembled for this study spans 
a period from July 2015 to April 2016 and includes:  
• Hourly Ground measurements for the SURFRAD sites [6] of 

Bondville, IL, Boulder, CO, Desert Rock, NV, Fort Peck MT, 
Goodwin Creek, MS, Penn State, PA and Sioux Falls, SD. 

• Historical intermediate-resolution SolarAnywhere Version 3 
(SAV3) satellite-derived irradiances at arbitrary location in 
North America (hourly, 10 kilometer resolution) [8] 

• Satellite-derived cloud motion vector (CMV) forecasts at 
arbitrary location in North America with 1-5 hour time 
horizons [1] 

• ECMWF, GFS, NDFD and HRRR NWP forecasts at 
arbitrary locations in North America with 1-48 hour time 
horizons [1], except for HRRR (1-16 hours only). 

 
III. RESULTS 

In figure 3, we report relative RMSEs for all models as a 
function of time horizons (1-48 hours ahead) across all 
measurement locations. The models include previous, current 
and new versions of the SUNY/SolarAnywhere models as well 
as their underlying model components, smart persistence. The 
historical satellite model is also plotted as a visual baseline 
reference. Smart persistence follows the definition of IEA Task 
36 [10], i.e., not only accounting for solar geometry detrending, 
but also increasing the integration time of the reference 
measurement  commensurately with forecast horizon. This 
definition is considerably more stringent (hence model taxing) 
than the commonly used, and often mislabeled, smart-
persistence that accounts for solar geometry-only. 

Existing SUNY/SolarAnywhere forecast model versions 
include the original V2.4 [1] and the currently operational V4 
model. The new versions include a site-independent model 
(V4x), a location-specific model locally trained with ground 
measurements (V4x site-specific), and a location-specific 
model trained with satellite-derived irradiances (V4x site-
specific-satellite). In Figure 4, we compare the skill of all 
versions at the operationally important 3-hour and 24-hour 
forecast time horizons. Skill is calculated in reference to the 
IEA smart persistence [10]. 

Table one reports relative RMSE and MAE for individual 
SURFRAD locations for one, 3 and 24 hours forecast horizons. 

Site-independent vs. location-specific V4x forecasts: The 
new site-independent model (V4x) shows systematic 
performance improvement at all locations and time horizons 
compared to the current operational model (V4). About half of 
the gain in performance originates from a better model blending 
fit to the ensemble of the ground locations (V4 had been fitted 



 

to a three-location subset). The other half in performance gain 
derives from adding predicted insolation conditions as an input 
to optimum model blending. This improved site-independent 
model fully retains the “out-of-the-box” applicability of the V4 
version tested by EPRI (see Figure 1). 

 The location-specific version exhibits further performance 
improvement. Forecast skill exceeds 45% across all time 
horizons. For this site-specific model, much of the gain in 
performance is attributable to its parameterization that accounts 
for predicted insolation conditions.  In Figure 5, we compare 
the performance improvement relative to V4 of different model 
configurations: The light blue bars correspond to the site-
independent model and the darker blue bars correspond to site-
fitted models.  The bars at left represent model versions that are 

identical to V4 but respectively fitted to all, and individual 
SURFRAD sites. The bars at right represent V4x models that 
optimize underlying model blend as a function of predicted 
insolation conditions. While insolation conditions 
parameterization increases performance steadily for the site-
independent model, the impact is considerably stronger for the 
site-specific model where the model blend reflects the 
conditions-dependent strengths and weaknesses of its 
underlying CMV and NWP components for specific locations. 

Operationally, the location-dependent forecast model 
performance represents a model that would be optimized 
locally from e.g., measured irradiances or PV plant-output data. 
This localized performance improvement could plausibly be 
further improved with real-time feedback techniques -- e.g., 
using DML or other techniques not addressed in this paper. 

 
Fig. 3. Relative forecast RMSE as a function of time horizon for the ensemble of seven SURFRAD locations. 

 

 
Fig. 4. Forecast skill benchmarked to IEA smart persistence 
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Fig. 5. Comparing the impact of insolation condition parameterization 
for site-independent and location-specific models 

 



 

Satellite-derived site-specific model: The key question here 
is how much of the site-specific performance enhancement 
discussed above can be captured when one does not have access 
to local measurements. SolarAnywhere historical data represent 
a robust, validated proxy for local measurements.  

We find that using SolarAnywhere historical data to locally 
optimize model configuration does capture some, but not all the 
localized performance improvement potential. As shown in 
Figure 4, while the skill of the SolarAnywhere-trained site-
specific model is markedly higher than both the existing V4 
model and the new site-independent V4x model, it does not 
reach the performance level of the ground-derived site-specific 
model -- particularly for shorter time horizons. This is likely 
because the CMV model is a direct by-product of the historical 
satellite model used for optimization, which could bias model 
blending for short horizons in favor of CMV. Nevertheless, the 
systematic site-specific improvement achievable from the use 

of SolarAnywhere historical data (available locally throughout 
entire continents) is significant. 

The scatter plots in figure 6 qualitatively illustrate the 
performance of the current SolarAnywhere V4 model vs the 
two site-specific versions of the new V4x model: ground-
trained, and satellite-trained. 

Application to regional forecast model optimization: We 
provide an example of site/regional model optimization for the 
State of California. This regional optimization work is 
undertaken as part of CEC’s EPIC research program [9] to 
develop operational forecast for the climatic regions in 
California (Figure 6). 

This investigation builds on the observations (1) that 
historical satellite-irradiances are as effective as measurements 
for model validation (see figure 2), and (2) that satellite-based 
forecast training is a relatively effective proxy for ground-based 
training as discussed above. 
 

TABLE I 
RELATIVE RMSE AND MAE FOR SURFRAD LOCATIONS AT 1, 3 AND 24 HOURS-AHEAD 

 

Bondville Boulder
Desert 
Rock Fort Peck

Goodwin 
Creek

Penn 
State

Sioux 
Falls All sites

SA-V2.4 20.2% 23.2% 15.8% 21.1% 17.3% 24.9% 24.1% 20.9%
SA-V4 20.5% 22.6% 14.9% 20.9% 18.3% 24.9% 22.2% 20.6%
SA-V4x 19.2% 21.4% 14.1% 19.1% 16.8% 23.3% 20.0% 19.1%
SA-V4x site spec. 17.8% 20.0% 12.7% 17.2% 15.4% 21.7% 18.3% 17.6%
SA-V4x site spec. sat. 19.7% 21.3% 15.0% 19.0% 17.6% 23.7% 20.5% 19.5%
SA-V2.4 30.6% 32.1% 24.8% 29.2% 27.8% 34.3% 32.9% 30.2%
SA-V4 26.4% 26.2% 18.1% 25.3% 25.3% 31.6% 25.1% 25.4%
SA-V4x 24.9% 24.3% 16.8% 23.9% 22.8% 28.9% 23.7% 23.6%
SA-V4x site spec. 22.7% 22.6% 14.7% 21.3% 21.0% 26.7% 21.1% 21.4%
SA-V4x site spec. sat. 24.2% 23.8% 16.8% 23.1% 22.3% 28.1% 23.0% 23.1%
SA-V2.4 35.5% 36.3% 24.6% 35.6% 33.1% 43.0% 37.7% 35.1%
SA-V4 30.0% 29.5% 20.6% 31.3% 28.2% 33.9% 29.5% 29.0%
SA-V4x 29.3% 28.5% 20.1% 29.6% 27.2% 33.0% 28.7% 28.1%
SA-V4x site spec. 27.8% 27.1% 18.3% 27.5% 25.8% 31.4% 26.8% 26.4%
SA-V4x site spec. sat. 28.8% 27.8% 19.6% 28.4% 26.6% 32.5% 27.7% 27.3%
SA-V2.4 15.8% 16.0% 9.7% 16.2% 13.7% 18.3% 17.6% 15.3%
SA-V4 14.6% 14.5% 9.1% 14.9% 12.5% 17.5% 15.0% 14.0%
SA-V4x 13.3% 13.5% 8.2% 13.1% 11.1% 15.5% 13.4% 12.6%
SA-V4x site spec. 12.1% 12.7% 7.6% 11.9% 10.2% 14.7% 12.1% 11.6%
SA-V4x site spec. sat. 13.7% 13.3% 8.6% 13.2% 11.8% 16.2% 13.9% 12.9%
SA-V2.4 22.0% 21.7% 14.7% 20.9% 19.9% 24.3% 23.0% 20.9%
SA-V4 18.4% 17.8% 10.9% 17.5% 17.4% 22.1% 16.6% 17.3%
SA-V4x 16.7% 15.5% 9.7% 15.6% 14.9% 19.5% 15.4% 15.3%
SA-V4x site spec. 15.2% 14.4% 8.6% 14.5% 13.4% 18.2% 13.8% 14.0%
SA-V4x site spec. sat. 16.6% 15.1% 9.8% 15.6% 14.7% 19.2% 15.7% 15.2%
SA-V2.4 24.5% 24.9% 14.7% 24.6% 21.7% 29.2% 25.0% 23.5%
SA-V4 20.5% 19.4% 12.0% 20.7% 18.6% 23.5% 19.0% 19.1%
SA-V4x 20.0% 18.6% 12.0% 18.8% 17.9% 22.7% 18.6% 18.4%
SA-V4x site spec. 19.0% 17.5% 10.7% 18.2% 16.3% 21.4% 17.6% 17.2%
SA-V4x site spec. sat. 20.6% 17.7% 11.1% 18.2% 17.4% 22.1% 18.5% 17.9%
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Fig. 6.  CEC Climatic regions of California 

 
Here we present preliminary results for four climatically 

distinct California regions: 
• Region 1-- Northern coastal strip 
• Region 9 -- Los Angeles Hills 
• Region 11 -- Northern Sacramento Valley 
• Region 15 – Imperial Valley Desert 
Figure 7 contrasts the (relative RMSE-benchmarked) 

performance of the current and new model versions across a 
sample of locations in these four regions. Relative to the current 
V4 version, the locally optimized model exhibits a performance 
improvement comparable to the site-specific results presented 
above. Models fitted from other intra-region points retain some 
of the performance gain. However, models optimized with 
other regions’ points do not show improvement and may show 
some performance degradation in the worst case. 

 

 
Fig. 7.  Resulting percent RMSEs for existing and locally fitted 
versions of the model across all forecast horizons (1-48 hours) for four 
California climatic regions. 
 

Probabilistic functionality: As a preliminary example of the 
new capabilities of the SUNY forecast engine – delivering both 
deterministic and probabilistic information -- Figure 5 shows 
probabilistic forecast quantiles as a function of time horizon for 
a predicted irradiance equal to 500 Wm-2. The figure compares 
probabilistic quantiles using site-independent models derived 
from ground data (the seven SURFRAD sites sample) and from 
historical satellite data at the same locations. 

 
IV. CONCLUSIONS 

We presented three versions of the operational 
SolarAnywhere forecast engine: a site-independent model 
readily deployable anywhere in North America, a locally 

 

Fig. 5. Comparing performance of the current SolarAnywhere V4 model (left), the site-specific ground-trained V4x model (center) and the 
satellite-trained V4x model (right) for 3-hours ahead forecasts in Goodwin Creek, MS 
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trained model from historical ground measurements, and a 
locally trained model from historical satellite-derived 
measurements. All three versions show measureable 
performance improvement over the current version that had 
already been singled out as best performer among thirteen US 
forecast services.  

Finally, we showed that model training using  
SolarAnywhere irradiances could capture a substantial fraction 
of performance improvement achievable with ground 
measurement training. 
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Fig. 5.  Experienced-based modeled forecast probability quantiles as 
a function of time horizon for a predicted irradiance of 500 Wm-2. 
The top graph illustrates a model empirically derived from ground 
measurements. The bottom graph illustrates a model empirically 
derived from SolarAnywhere historical irradiances 
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