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Abstract	

	

This	paper	investigates	the	relationship	between	two	parameters	characterizing	a	given	location	
on	a	given	day:	the	daily	clear	sky	index	KT*	and	the	intraday	variability	given	by	the	standard	
deviation	of	the	changes	in	the	hourly	clear	sky	index	σሺ∆kt	∆୲

∗ ሻ.		Empirical	evidence	assembled	
from	 twenty	 climatically	 distinct	 locations	 led	 us	 to	 derive	 a	 simple	 model	 to	 infer	 intraday	
variability	 from	 the	 day’s	 clear	 sky	 index.	 	 Although	 the	 model	 shows	 little	 dependence	 on	
location,	 we	 did	 observe	 a	 systematic	 difference	 traceable	 to	 a	 location’s	 prevailing	 cloud	
formation	 regime.	 Therefore,	 we	 also	 propose	 two	 alternative	 models	 for	 sites	 where	 cloud	
formations	 is	 influenced	 by	 local	 orography	 and	 sites	 where	 cloud	 formation	 is	 traceable	 to	
weather	 events	 only.	 Finally,	 we	 present	 a	 possible	 application	 of	 the	models	 to	 enhance	 the	
informative	content	of	day(s)	ahead	NWP	forecasts.		
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1.	Introduction	

The	characterization	of	solar	resource	variability	is	an	important	issue	for	grid‐connected	solar	
PV	as	penetration	increases	because	of	the	challenges	variability	poses	to	grid	operators	(Perez	
and	Hoff,	2013).		

The	 topic	 of	 solar	 energy	 variability	 has	 generated	 a	 considerable	 amount	 of	 research	 during	
these	 last	 years.	 In	 particular,	 much	 attention	 has	 been	 paid	 to	 the	 study	 of	 the	 short‐term	
variability	of	the	PV	power	output	of	a	single	plant	due	to	the	cloud	fluctuations	(Marcos	et	al.,	
2011a;	Perpiñán	et	al.,	2013,	Van	Haaren	et	al.,	2014;	Mills	et	al.,	2010;	Hansen,	2007).	

Some	authors	(Perez	and	Hoff,	2013;	Lave	et	al.,	2012;	Sengupta	and	Keller,	2011;	Murata	et	al.	
2009)	 also	 showed	 that	 short‐term	 power	 fluctuations	 generated	 by	 an	 ensemble	 of	
geographical	dispersed	PV	plants	are	considerably	reduced	compared	to	a	single	one,	and	that	
the	 reduction	 can	be	predicted	on	 the	basis	 of	power	plant	 interdistance,	 cloud/cloud	 system	
motion	and	considered	fluctuation	time	scale.	

Metrics	describing	and	quantifying	variability	at	different	time	scales	are	a	key	ingredient	of	this	
characterization.	

Van	Haaren	et	al.	(2014)	proposed	a	quantitative	metric	called	the	Daily	Aggregate	Ramp	Rate	
(DARR)	 which	 sums	 1‐min	 single	 Plane	 Of	 Array	 (POA)	 irradiance	 sensor	 over	 each	 day	 to	
characterize	 daily	 variability	 in	 a	 utility‐scale	 plant.	 Lenox	 and	 Nelson	 (2010)	 proposed	 the	
Inter‐Hour	Variability	Score	(IHVS)	which	summed	the	absolute	value	of	1‐min	changes	in	POA	
irradiance	and	AC	power	output	in	each	hour.	Badosa	et	al.	(2013)	showed	that	solar	irradiance	
variability	 at	 the	 diurnal	 scale	 can	 be	 classified	 in	 regimes	 based	 on	 three	 parameters.	 These	
parameters	are	 the	daily	clear‐sky	 index,	solar	 irradiance	morning–afternoon	asymmetry	 	 and	
random	random	variability	of	the	solar	irradiance.		

In	a	previous	work,	Perez	et	al.	(2011)	proposed	models	to	characterize	the	one‐minute	intra‐
hourly	solar	variability	based	upon	hourly	inputs.	Short‐term	variability	metrics	can	be	inferred	
by	the	model	using	hourly	insolation	data	from	e.g.,	satellite‐based	hourly	products.	The	trends	
exhibited	by	the	models	were	robust	and	showed	little	site	dependency	(Perez	et	al.,	2011).	

Here	we	address	the	 issue	of	 intraday	variability	with	a	variability	time	scale	of	one	hour.	For	
this	purpose,	the	daily	clear	sky	index	is	used	as	an	input	to	infer	the	standard	deviation	of	the	
changes	in	the	hourly	clear	sky	index	over	the	considered	day.		

Previous	studies	(Stein	et	al.,	2012	;		Kang	and	Tam,	2013)	have	demonstrated	that	it	is	possible	
to	model	intradaily	variability	from	ground‐based	solar	radiation	daily	time	series.		

Stein	 et	 al.,	 (2012)	 introduced	 a	 new	metric:	 the	 variability	 index,	 VI,	 to	 quantify	 irradiance	
variability	over	various	timescales.	Three	sites	were	used	to	evaluate	the	consistency	of	this	new	
metric.	 By	 pairing	 the	 VI	 index	 with	 the	 daily	 clear	 sky	 index,	 KT*,	 they	 showed	 that	 a	
characteristic	 scatter	 plot	 named	 the	 ‘’arrow‐head’’	 plot	 emerged	 from	 the	 data	 at	 hand.	 A	
classification	scheme	based	on	the	VI	index	and	clear	sky	index	was	used	to	distinguish	between	
four	types	of	irradiance	days.	

In	a	similar	manner,	Kang	and	Tam	(2013)	proposed	a	new	characterization	and	classification	
method	(the	K‐POP	method)	for	daily	sky	conditions	by	using	the	daily	clearness	index	ܭ஽	and	a	
new	 metric	 called	 the	 daily	 probability	 of	 persistence	 (POPD).	 POPD	 observes	 differences	
between	 neighboring	 instantaneous	 clearness	 indices	 and	 calculates	 a	 probability	 that	 the	
differences	 are	 equal	 to	 zero	 (Kang	 and	 Tam,	 2013).	 Three	 sites	 were	 chosen	 to	 test	 the	
consistency	of	 the	method.	 	The	authors	showed	that	 the	annual	distribution	of	data	points	 in	



the	K‐POPD	plane	for	all	three	locations	were	enclosed	by	the	same	irregular	nonagon.		From	the	
K‐POPD	plane	the	authors	also	identified	10	classes	that	correspond	to	different	sky	conditions.	

In	his	thesis,	Dambreville	(2014)	proposed	a	classification	scheme	based	on	the	daily	mean	clear	
sky	 index	 and	 daily	 variability	 quantified	 by	 the	 V	 metric	 (Coimbra	 et	 al.,	 2013).	 	 The	
classification	 was	 used	 to	 characterize	 the	 sky	 conditions	 experienced	 by	 a	 site	 located	 near	
Paris.	

Some	 authors	 (Huang	 et	 al.,	 2014;	 Kang	 and	 Tam,	 2015)	 also	went	 further	 by	 deriving	 some	
prediction	models	of	daily	variability.	 Indeed,	accurate	prediction	of	daily	solar	variations	will	
enable	power	operators	to	make	better	scheduling	decisions	for	solar‐based	power	generation.	
For	 instance,	Huang	et	al.	 (2014)	 studied	 the	daily	variability	 at	 four	 sites	 across	Australia	by	
using	the	Daily	Variability	Index	(DVI)	–	which	is	similar	to	the	VI	(Stein	et	al.,	2012).	In	addition	
to	the	persistence	model,	they	also	built	three	statistical	models	(including	a	machine	 learning	
technique)	 to	 predict	 the	 DVI	 using	 meteorological	 variables	 as	 predictors.	 The	 latter	 were	
selected	 from	 the	 global	 atmospheric	 reanalysis	 product	 of	 the	European	Centre	 for	Medium‐
Range	Weather	Forecasts	(ECMWF).	However,	as	noted	by	the	authors	 in	their	conclusion,	the	
probability	 density	 function	 (PDF)	 of	 the	 DVI	 was	 not	 well	 reproduced	 by	 the	 statistical	
techniques	 and	 may	 suggest	 a	 limitation	 of	 these	 techniques	 in	 tackling	 the	 solar	 variability	
problem.			

Kang	 and	 Tam	 (2015)	 used	 the	 National	 Weather	 Service	 (NWS)	 day‐ahead	 total	 sky	 cover	
forecast	 to	 predict	 the	 day‐ahead	ܭ஽		 and	 POPD	 values.	 A	 multi‐stage	 procedure	 (including	 a		
robust	 regression	 technique)	 was	 employed	 to	 estimate	 the	 parameters	 of	 a	 linear	 equation	
relating	the	daily	 fluctuation	of	solar	 irradiance	(POPD)	to	the	the	daily	 fluctuation	of	 total	sky	
cover.	The	forecasting	method	was	tested	on	one	year	of	data	from	the	Solar	Radiation	Research	
Laboratory	 Baseline	Measurement	 System	 (SRRL	 BMS).	 As	 noted	 by	 the	 authors,	 overall,	 the	
proposed	method	provides	acceptable	predictions	results	but	further	improvement	is	needed	in	
the	 intermediate	ܭ஽		 zone	 that	 corresponds	 to	 the	 lowest	 POPD	 values	 (or	 conversely	 to	 the	
highest	variability	values).	

In	this	study,	we	make	a	step	further	by	analyzing	intraday	solar	variability	of		twenty	sites	that	
exhibit		different	types	of	climate.	For	this	purpose,	we	select	14	climatically	distinct	regions	of	
North	America	as	well	as	6	subtropical/tropical	island	territories.		

First,	we	propose	a	simple	site	characterization	based	on	2	criteria:	(1)	the	daily	clear	sky	index	
is	 used	 as	 an	 input	 to	 define	 a	 given	 day’s	meteorological	 conditions	 and	 (2)	 hourly	 intraday	
variability	measured	by	a	well‐established	metric	‐	the	standard	deviation	of	the	changes	in	the	
clear	sky	index	(Perez	and	Hoff,	2013)–	is	used	to	quantify	variability.			

Second,	based	on	 a	 strong	 empirical	 evidence,	we	propose	 a	parameterization	of	 the	 intraday	
solar	variability	stating	that	intraday	variability	is	a	predictable	function	of	daily	clear	sky	index.		

It	must	be	stressed	however	that	contrary	to	(Huang	et	al.,	2014;	Kang	and	Tam,	2015)	our	aim	
here	is	to	propose	a	simple	but	yet	effective	and	actionable	approach.	

Such	 a	 characterization	 would	 be	 helpful	 in	 an	 operational	 context.	 Predicted	 intraday	
variability	 enhances	 the	 informative	 content	 of	 day(s)	 ahead	 Numerical	 Weather	 Prediction	
(NWP)	forecasts	–	operational	forecasts	such	as	ECMWF	have	a	limited	time	resolution	and	tend	
to	underestimate	 intraday	dynamics.	This	 information	could	be	of	particular	 relevance	 to	grid	
operators’	decision	making,	particularly	in	non‐interconnected	insular	networks.	For	instance,	a	
predicted	high	variability	day	may	suggest	an	adaptation	of	the	operational	planning	with	ready	
deployment	of	stand‐by	generation	capability.	

	



	

2.	Metrics,	model	derivation	and	data			

The	two	quantities	used	in	the	proposed	parameterization	are	the	daily	clear	sky	index	KT*	(the	
variability	predictor)	and	the	intraday	variability	per	se	given	by	the	standard	deviation	of	the	
change	in	the	clear	sky	index,	over	the	considered	day.		

2.1.		Daily	clear	sky	index		

The	parameter	used	to	characterize	the	daily	solar	conditions	is	the	daily	clear	sky	index.	(KT*).	
The	daily	clear	index	KT*	is	defined	by:	

∗ܶܭ ൌ
∑ ሺ݅ሻே೓ܫܪܩ
௜ୀଵ

∑ ௖௟௘௔௥ܫܪܩ
ே೓
ଵ ሺ݅ሻ

																																																																												ሺ1ሻ	

where	 ௛ܰ	represents	 the	number	of	daylight	hours	(i.e.	 for	which	 the	solar	zenith	angle	SZA	<	
85°)	in	a	day.	

	is	ܫܪܩ the	 hourly	 global	 horizontal	 irradiance	 and			ܫܪܩ௖௟௘௔௥	represents	 the	 clear	 sky	 global	
irradiance	 for	 the	 considered	 hour	 and	 can	 be	 obtained	 from	 (Bird	 and	 Hulstrom,	 1981)	 or	
Ineichen,	 2006).	The	Bird	model	 (Bird	and	Hulstrom,	1981)	was	used	 for	 the	 six	 insular	 sites	
while	the	simplified	SOLIS	model	(Ineichen,	2008)	was	used	for	the	US	locations,	noting	that	the	
choice	of	model	would	have	virtually	no	impact	on	the	present	observations.	

2.2.		Intraday	variability	

The	intradaily	variability	is	given	by	the	standard	deviation	of	the	change	in	the	clear	sky	index	
over	 the	 considered	 day	 i.e.	 	σሺ∆kt	∆୲

∗ ሻ.	 (Perez	 et	 al.,	 2015)	 called	 this	 metric	 the	 nominal	
variability.	Nominal	variability	refers	to	the	variability	of	the	dimensionless	clear	sky	index	kt*	
which	is	directly	correlated	with	the	ramp	rates’	magnitude.		

Other	 metrics	 have	 been	 proposed	 to	 characterize	 the	 variability	 (e.g.,	 Perez	 et	 al.,	 2011;	
Coimbra	et	al.,	2013).	However,	most	authors	prefer	using	the	nominal	variability	over	a	given	
time	span	as	the	metric	for	variability.	We	retain	this	definition	of	nominal	variability:	

Nominal	Variability	=		ߪሺ∆݇ݐ	∆௧
∗ ሻ	=	ඥܸܽݎሾ∆݇ݐ	∆௧

∗ ሿ																																		(2)	 	
	
In	this	application,	the	time	scale	Δݐ ൌ 1	hour	and	the	time	span	is	 ௛ܰ	hours.		

Let	us	also	recall	that	the	clear	sky	index	kt*	is	defined	as	the	ratio	of	GHI	to	clear	sky	GHI.			

We	 also	provide	 two	 complementary	metrics:	 	 the	maximum	absolute	 clear	 sky	 index	 change	
occurring	 within	 the	 day	 i.e.	 	maxሺ|∆kt	∆୲

∗ |ሻ	and	 the	median	 absolute	 deviation	 (MAD)	 of	 the	
௧∆	ݐ݇∆

∗ 	series	 for	 the	 considered	 day	 i.e.	݉ܽ݀ሾ∆݇ݐ	∆௧
∗ ሿ.	 These	 two	 metrics	 enhance	 the	

information	contained	in	σሺ∆kt	∆୲
∗ ሻ.		The	first		metric	should	be	relevant	for	the	grid	operators	as	

it	quantifies	an	upper	 limit	of	 the	 intraday	variability	while	 the	second	metric,	contrary	to	the	
standard	deviation,	is		less	sensitive	to	extremes	and/or	outliers.	

2.3.	Model	derivation	and	structure	

As	 mentioned	 above,	 the	 objective	 of	 this	 paper	 is	 two‐fold.	 First,	 it	 proposes	 a	 simple	 site	
characterization	and	second	a	model	that	parameterizes	the	intraday	solar	variability.	Regarding	
the	 structure	 of	 the	 model,	 the	 known	 input	 to	 the	 model	 is	 the	 daily	 clear	 sky	 index.	 The	



unknown	output	of	the	model	consists	of	the	metric	that	estimates	the	site	intraday	variability	
௧∆	ݐ݇∆ሺߪ

∗ ሻ.	

The	model	 is	 built	 empirically	 from	 hourly	 GHI	 ground	measurements	 at	 several	 climatically	
distinct	 locations.	 The	 model	 consists	 of	 one	 lookup	 table	 defined	 by	 KT*	 and	 returning	 the	
intradaily	variability	metric		(the	lookup	table	is	given	in	section	results).	

2.4.	Experimental	data		

Seven	stations,	part	of	NOAAA’s	SURFRAD	network	(SURFRAD,	2010),	seven	stations	 from	the	
NOAA’s	 ISIS	network	(ISIS,	2010),	and	six	 insular	sites	are	 selected	 for	 the	empirical	 analysis.	
Each	station	provides	one	year	of	GHI	observations	at		hourly	time	scale.	This	leads	to	a	total	of	
7110	 days	 or	 	 170640	 hourly	 measurements.	 The	 experimental	 data	 are	 further	 detailed	 in	
Table	1.	

Two	locations	have	been	chosen	for	the	islands	of	La	Reunion	(Saint‐Pierre	–	coastal	site		and	Le	
Tampon‐inland	site)	and	Gran	Canaria	(Las	Palmas	and	Pozo	Izquierdo).		

In	 the	case	of	 La	Réunion,	 the	 two	aforementioned	sites	are	quite	 representative	of	a	 tropical	
island	with	a	complex	orography.		Hence,	although	distant	of	only	10	km,	these	two	sites	exhibit	
very	different	sky	conditions	(Diagne,	2015).	

For	Gran	Canaria	island,	we	chose	two	representative	stations	that	take	into	account	the	climatic	
variability	of	the	island	(Mazorra	Aguiar	et	al.,	2010).	Pozo	Izquierdo	is	situated	in	the	south	of	
the	 Island	 and	 presents	 a	 large	 amount	 of	 clear	 days,	 while	 Las	 Palmas,	 northern	 station,	 is	
affected	by	clouds	formation	during	summer	due	to	the	trade	winds	effect.	

	 Station	 Latitude Longitude Elevation
(m)	

Climate	 year

Surfrad	
network	

	 	

	 Goodwin	
Creek	

34.25 ‐89.87 98	 Subtropical	 2013

	 Desert	Rock	 36.63 ‐116.02 1007	 Arid	 2013
	 Bondville	 40.05 ‐88.37 213	 Continental	 2013
	 Boulder	 40.13 ‐105.24 1689	 Semi‐arid	 2013
	 Penn	State	 40.72 ‐77.93 376	 Humid	

continental	
2013

	 Sioux	Falls	 43.73 ‐96.62 473	 Continental	 2013
	 Fort	Peck	 48.31 ‐105.10 634	 Continental	 2013
ISIS	
network	

	 	

	 Sterling	 38.95 ‐77.45
	

85	 Humid	
continental	

2013

	 Seattle	 47.65 ‐122.25
	

20	 Temperate	
maritime	

2013

	 Salt	Lake	City	 40.75 ‐111.95 1288 Semi‐arid	 2013
	 Madison	 43.15 ‐89.35 271	 Continental	 2013
	 Handford	 36.35 ‐119.65 73	 Mediterranean	 2013
	 Bismarck	 46.75 ‐100.75 503	 Continental	 2013
	 Albuquerque	 35.05 ‐106.65 18	 Subtropical	 2013
Insular	 	 	



	

Table	1.	Sites	under	study	

	

3.	Results	

3.1.	Site	characterization	

The	proposed	parameterization	scheme	delineates	a	2‐dimensional	space	illustrated	in	Fig.1	for	
the	site	of	Sterling.	It	is	clear	from	this	illustration	that	intraday	variability	is	a	robust	function	of	
the	daily	 clear	 sky	 index,	 ranging	 from	 little	 to	no	variability	 for	dark	overcast	and	very	clear	
conditions	 to	 maximum	 variability	 for	 intermediate	 conditions.	 Remarkably,	 the	 trend	
illustrated	for	Sterling	is	very	similar	to	the	trends	observed	at	all	other	locations	as	shown	in	
Fig.	2.	Although	the	distribution	of	occurrences	in	the	2‐dimensional	space	varies	from	location	
to	location	depending	on	climate	(e.g.,	compare	Desert	Rock	and	Sterling)	the	trends	linking	KT*	
and	ߪሺ∆݇ݐ	∆௧

∗ ሻ	exhibit	 only	 a	 minor	 influence	 of	 the	 local	 climatic	 environment.	 These	
similarities	as	also	noted	by	(Stein	et	al.,	2012)	have	a	physical	basis	due	to	the	cloud‐induced	
fluctuations	processes.	

The	 composite	ߪሺ∆݇ݐ	∆௧
∗ ሻ	vs.	 KT*	 trend	 for	 all	 locations	 is	 shown	 in	 Fig.	 3.	 The	 dark	 line	

represents	 the	global	mean	trend	calculated	with	data	of	all	 sites.	This	global	mean	trend	was	
derived	by	taking	the	mean	of	the	probability	density	of	the	variability	for	each	bin	of	KT*.	This	
method	was	 applied	 after	 checking	 that	 the	 distribution	 estimates	were	 unimodal.	 This	well‐
defined	trend	suggests	that	intradaily	variability	can	be	a	predictable	function	of	the	daily	clear	
sky	index.	

sites	
	 Raizet	

(Guadeloupe)	
16.264 ‐61.516 11 Tropical	 2012

	 Oahu	(Hawaii)	 21.312 ‐158.084 11 Tropical	 2011
	 Saint‐Pierre	

(Réunion)	
‐21.340 55.491 75 Tropical	 2012

	 Tampon	
(Réunion)	

‐21.269 55.506 550 Tropical	 2013

	 Pozo	Izquierdo	
(Gran	canaria)	

27.817 ‐15.424 47 Subtropical	 2005

	 Las	Palmas	
(Gran	Canaria)	

28.110 ‐15.426 17 Subtropical	 2005



	

Fig.	1.	Two‐dimensional	space	KT*‐	σሺ∆kt	∆୲
∗ ሻ	‐	Sterling	site	

	

Fig.	2.	Distribution	of	points	 in	 the	plane	KT*‐	σሺ∆kt	∆୲
∗ ሻ		 for	all	sites.	The	black	 line	represents	

the	mean	trend	of	each	site.	



	

Fig.	3.	Scatter	density	plot	for	all	locations	representing	7110	days.	The	black	line	represents	the	
global	mean	trend.	

	

Individual	site	trends	are	intercompared	in	Fig.	4.	Trends	are	comparable,	but	some	differences	
are	nevertheless	apparent,	with	some	locations	systematically	over	the	global	trend	and	others	
systematically	below	the	global	trend.		

Fig.	5	plots	the	average	deviation	between	the	global	mean	trend	and	each	individual	site’s	trend.	
This	figure	reveals	that	sites	above	the	trend	‐	Albuquerque,	Boulder,	both	Reunion	Island	sites,	
Hawaii,	Guadeloupe,	and	one	of	the	Canary	Islands	site	–	tend	to	be	sites	where	cloud	buildup	is	
influenced	by	nearby	orography.	The	sites	below	the	 trend	are	 locations	where	cloud	regimes	
are	 driven	 primarily	 by	 the	 passage	 of	 weather	 systems.	 	 The	 one	 exception	 is	 Las	 Palmas,	
however	this		site	is	on	the	windward	side	of	the	island	and	often	experience	a	low	level	stable	
cloud	 layer	more	 representative	of	 the	ocean	mass	 ahead	unlike	 the	 typical	 orography‐driven	
cloud	build‐up	characterizing	partly	cloudy	events	at	the	other	sites.		



	

	

	Fig.		4.	Average	trends	of	each	site.	The	black	line	represents	the	global	average	trend	

	

Fig.	5.	Average	deviation	between	each	site’s	trend	and	global	average	trend	

	

Although	the	individual	 trends	do	not	deviate	substantially	 from	the	average	trend,	suggesting	
that	the	proposed	parameterization	is	robust,	Figs.	6	and	7	propose	two	separate	trends	for	sites	
where	cloud	regimes	are,	and	are	not	influenced	by	orographic	build	up,	denoted	respectively	as	
Type	B	and	Type	A.	



	

Fig.	6.	Average	trends	for	sites	where	cloud	formation	is	traceable	to	weather	events	only.	The	
black	line	represents	the	mean	trend	of	the	sites	type	A	

	

Fig.	7.	Average	trends	for	sites	with	cloud	formations	influenced	by	orography	(type	B).	The	
black	line	represents	the	average	trend	of	the	concerned	sites.	For	ease	of	comparison,	we	also	

add	the	average	trend	of	sites	type	A	as	a	dotted	blue	line	

	
3.2.	Parameterization	of	intradaily	variability	

The	above	observations	led	us	to	propose	a	simple	model	that	quantifies	intraday	variability	as	a	
function	of	the	daily	clear	sky	index.		

Although	it	would	be	possible	to	fit	a	continuous	function	(say	for	instance	a	polynomial	of	order	
4)	 to	 the	 data,	 we	 propose	 here	 a	 modeling	 approach	 based	 on	 a	 look‐up	 conversion	 table.	



Indeed,	 this	 technique	 has	 proven	 effective	 both	 in	 the	 case	 of	 solar	 irradiation	 transposition	
models	 (Perez	 et	 al.,	 1990)	 and	 solar	 irradiation	 fluctuations	models	 (Perez	 et	 al.	 2011).	 The	
Lookup	table	is	given	in	Table	2.	Table	2		reports	the	three	intraday	variability	metrics	derived	
for	 all	 observations	 falling	 in	 a	 particular	 KT*	 bin	 as	 well	 as	 the	 standard	 deviations	 around	
these	means.	The	number	of	observations	in	each	bin	is		also	reported	in	Table	2.	The	number	of	
observations	should	provide	an	indication	of	the	robustness	of	any	particular	bin	value.	Tables	3	
and	 4	 propose	 two	 complementary	 models	 for	 sites	 with	 cloud	 formations	 influenced	 by	
orography	(type	B)	and	sites	where	cloud	formation	is	traceable	to	weather	events	only	(type	A).	

	

KT*	 ોሺ∆ܜܓ	ܜ∆
∗ ሻ	 ܜܓ∆|ሺܠ܉ܕ ܜ∆

∗ |ሻ	 ࢚࢑∆ሾࢊࢇ࢓ ࢚∆
∗ ሿ	 Number	of	

observations	
<0.1	 0.04		+/‐		0.02	 0.08		൅/‐ 	0.05 0.03 	൅/‐ 	0.01 42	
0.1‐0.2	 0.07		+/‐		0.04	 0.15		൅/‐ 	0.10 0.05		൅/‐ 	0.02 192	
0.2‐0.3	 0.11		+/‐		0.06	 0.23		൅/‐ 	0.13 0.09		൅/‐ 	0.04 256	
0.3‐0.4	 0.15		+/‐		0.06	 0.31		൅/‐ 	0.14 0.11		൅/‐ 	0.04 320	
0.4‐0.5	 0.18		+/‐		0.07	 0.35		൅/‐ 	0.15 0.14		൅/‐ 	0.05 464	
0.5‐0.6	 0.20		+/‐		0.07	 0.40		൅/‐ 	0.15 0.15		൅/‐ 	0.05 545	
0.6‐0.7	 0.21		+/‐		0.07	 0.42		൅/‐ 	0.16 0.16		൅/‐ 	0.05 712	
0.7‐0.8	 0.20		+/‐		0.07	 0.41		൅/‐ 	0.15 0.15		൅/‐ 	0.05 863	
0.8‐0.9	 0.17		+/‐		0.07	 0.36		൅/‐ 	0.15 0.13		൅/‐ 	0.05 1236
0.9‐0.95	 0.14		+/‐		0.07	 0.30		൅/‐ 	0.16 0.10		൅/‐ 	0.04 851	
0.95‐1	 0.09		+/‐		0.06	 0.21		൅/‐ 	0.14 0.06		൅/‐ 	0.03 1125
<1.1	 0.07		+/‐		0.05	 0.18		൅/‐ 	0.13 0.05 	൅/‐ 	0.03 506	

Table	2.	Lookup	table	global	model	

	

KT*	 ોሺ∆ܜܓ	ܜ∆
∗ ሻ	 ܜܓ∆|ሺܠ܉ܕ ܜ∆

∗ |ሻ	 ࢚࢑∆ሾࢊࢇ࢓ ࢚∆
∗ ሿ	 Number	of	

observations	
<0.1	 0.05		+/‐		0.03	 0.10 	൅/‐ 	0.08 0.03 	൅/‐ 	0.02 4		
0.1‐0.2	 0.08		+/‐		0.03	 0.16 	൅/‐ 	0.08 0.06 	൅/‐ 	0.02 12	
0.2‐0.3	 0.16		+/‐		0.06	 0.32 	൅/‐ 	0.16 0.12 	൅/‐ 	0.04 28	
0.3‐0.4	 0.18		+/‐		0.06	 0.37 	൅/‐ 	0.17 0.13 	൅/‐ 	0.04 62	
0.4‐0.5	 0.21		+/‐		0.07	 0.42 	൅/‐ 	0.15 0.16 ൅/‐ 	0.05 118	
0.5‐0.6	 0.23	+/‐		0.07	 0.46 	൅/‐ 	0.17 0.17 ൅/‐ 	0.05 192	
0.6‐0.7	 0.25		+/‐		0.07	 0.48 	൅/‐ 	0.16 0.18 ൅/‐ 	0.05 267	
0.7‐0.8	 0.23		+/‐		0.07	 0.46 	൅/‐ 	0.15 0.17 ൅/‐ 	0.05 359	
0.8‐0.9	 0.20		+/‐		0.07	 0.41 	൅/‐ 	0.16 0.14 ൅/‐ 	0.05 531	
0.9‐0.95	 0.16		+/‐		0.07	 0.37 	൅/‐ 	0.17 0.11 ൅/‐ 	0.05 340	
0.95‐1	 0.11		+/‐		0.07	 0.26		൅/‐ 	0.17 0.07 ൅/‐ 	0.04 375	
<1.1	 0.10		+/‐		0.06	 0.26		൅/‐ 	0.17 0.06 ൅/‐ 	0.04 152	

	

Table	3.	Lookup	table	model	for	sites	with	cloud	formations	influenced	by	orography	(type	B)		

	

	 	



	

	

KT*	 ોሺ∆ܜܓ	ܜ∆
∗ ሻ	 ܜܓ∆|ሺܠ܉ܕ ܜ∆

∗ |ሻ	 ࢚࢑∆ሾࢊࢇ࢓ ࢚∆
∗ ሿ	 Number	of	

observations
<0.1	 0.04		൅/‐		0.02 0.08 	൅/‐ 	0.05 0.03 	൅/‐ 	0.01	 37	
0.1‐0.2	 0.07		൅/‐		0.04 0.15 	൅/‐ 	0.09 0.05 	൅/‐ 	0.03	 180
0.2‐0.3	 0.11		൅/‐		0.06 0.22		൅/‐ 	0.13 0.08 	൅/‐ 	0.04	 223
0.3‐0.4	 0.14		൅/‐		0.06 0.29		൅/‐ 	0.13 0.10 	൅/‐ 	0.04	 245
0.4‐0.5	 0.17		൅/‐		0.07 0.33 	൅/‐ 	0.14 0.13 	൅/‐ 	0.05	 313
0.5‐0.6	 0.19		൅/‐		0.06 0.37		൅/‐ 	0.13 0.14 	൅/‐ 	0.05	 310
0.6‐0.7	 0.20		൅/‐		0.06 0.39 	൅/‐ 	0.14 0.15 	൅/‐ 	0.05	 387
0.7‐0.8	 0.19		൅/‐		0.06 0.38 	൅/‐ 	0.14 0.14 	൅/‐ 	0.05	 441
0.8‐0.9	 0.16		൅/‐		0.06 0.32 	൅/‐ 	0.13 0.12 	൅/‐ 	0.04	 644
0.9‐0.95	 0.12		൅/‐		0.05 0.26 	൅/‐ 	0.13 0.08 	൅/‐ 	0.04	 475
0.95‐1	 0.08		൅/‐		0.04 0.19 	൅/‐ 	0.12 0.05 	൅/‐ 	0.03	 724
<1.1	 0.06		൅/‐		0.03 0.14 	൅/‐ 	0.08 0.04 	൅/‐ 	0.02	 349

	

Table	4.	Lookup	table	model	for	sites	where	cloud	formation	is	traceable	to	weather	events	only.	
(type	A)	

  
3.3.	Model	application	example:	day‐ahead	forecasts	paired	with	intradaily	variability	

Day	ahead	solar	irradiance	forecasting	is	essential	for	an	efficient	integration	of	large	shares	of	
solar	 energy	 into	 the	 electricity	 grid.	 In	 addition	 to	 the	 day	 ahead	 forecasts,	 an	 information	
related	to	the	expected	intraday	variability	could	be	a	great	help	for	the	grid	operator	in	such	a	
context	of	decision‐making.		Day	ahead	forecasts	are	produced	by	numerical	weather	prediction	
(NWP)	models	 (e.g.,	 ECMWF).	Although	 these	 forecasts	 are	 increasingly	 accurate	 (Perez	et	 al.,	
2013)	especially	 in	terms	of	daily	KT*	prediction,	 they	generally	produce	smoothed	irradiance	
profiles	 and	 lack	 in	 hour	 to	 hour	 dynamics.	 Using	 the	 predicted	 KT*,	 one	 could	 apply	 the	
proposed	parameterization	(Table	2)	to	estimate	intraday	variability.	Fig.	8	shows	the	intraday	
variability	inferred	from	the	ECMWF	forecasts	at	the	site	of	Saint‐Pierre	with	two	variants.	The	
first	case	(Fig.	8a)	plots	the	predicted	intraday	variability	in	case	of	a	perfect	forecast	of	the	daily	
KT*	 (i.e.	 forecasted	KT*	=	measured	KT*)	while	Fig.	8b	displays	 the	case	where	both	KT*	and	
intraday	variability	are	inferred	from	the	ECMWF	forecasts.	

Fig.	8a	shows	the	performance	of	 the	proposed	model	 in	the	 ideal	case	of	a	perfect	 forecast	of	
KT*.	 As	 seen,	 the	model	 reproduces	 quite	well	 the	 density	 of	 the	measured	 variability.	 In	 an	
operational	 environment	 where	 KT*	 is	 predicted	 with	 a	 degree	 of	 uncertainty	 (day‐ahead	
ECMWF	for	the	purpose	of	illustration),	Fig.	8b	shows	that	the	proposed	parameterization	could	
be	 valuable;	 indeed	 the	 most	 interesting	 zone	 that	 corresponds	 to	 the	 maximum	 variability	
(intermediate	 KT*	 values)	 is	 rather	well	 reproduced.	 Future	 improvements	 of	 NWP	 forecasts	
will	make	Fig.	8b	tend	to	Fig.	8a.	



	

Fig.	8	.		Intradaily	variability	inferred	from	day‐ahead	ECMWF	forecasts	

	

	

4.	Conclusions	

We	presented	a	site	characterization	based	on	2	parameters:	the	daily	clear	sky	index	KT*	and	
the	 intraday	 variability	 given	 by	 a	 commonly	 accepted	 metric:	 the	 standard	 deviation	 of	 the	
changes	 in	 the	 clear	 sky	 index	σሺ∆kt	∆୲

∗ ሻ.	We	 showed	 that	 the	 relationship	 between	 these	 two	
quantities	 had	 little	 dependence	 on	 location	 –	 suggesting	 that	 intraday	 variability	 could	 be	
inferred	 from	 the	 day’s	 mean	 clear	 sky	 index.	 However	 we	 noted	 some	 influence	 on	 the	
relationship	that	could	be	traced	on	a	site’s	orgraphy	and	its	influence	on	cloud	formation.	Sites	
where	 orographic	 cloudiness	 might	 be	 expected	 tend	 to	 exhibit	 more	 variability	 for	 a	 given	
mean	daily	clear	index	than	sites	where	cloud	regimes	are	driven	by	weather.	

We	used	the	empirical	evidence	assembled	from	20	locations	to	propose	a	simple	model	to	infer	
intraday	variability	from	a	day’s	clear	sky	index.	Such	a	simple	model	could	be	used	to	enhance	
the	informative	content	of	day(s)	ahead	NWP	forecasts.	
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