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ABSTRACT 
 
This article presents an operational evaluation of the SUNY 
satellite irradiance prediction model when using the ISCCP 
B1U data as an input and compares its performance against 
the current Unidata-driven operational version of the same 
underlying the National Solar Resource Data Base 
(NSRDB). High quality ground truth sites from different US 
climatic environments are used to benchmark model 
performance. Results show that the performance of the 
B1U-driven model is at least as good as the performance of 
the current US operational model; hence, since the B1U data 
cover the globe, the model shows potential to be 
successfully applied to the rest of the planet. 
 
 
1. INTRODUCTION 
 
The National Aeronautics and Space Administration 
(NASA), the National Renewable Energy laboratory 
(NREL), the National Climatic Data Center (NCDC) and the 
University at Albany (SUNY) are collaborating to develop a 
long-term high-resolution solar resource archive. The new 
data set will provide surface irradiances for the entire globe 
and span nearly 30 years with an expected time resolution of 
3 hours and a geographical resolution of approximately 10 
km by 10 km.  
 
The new data set is expected to come online in late 2013 
when NREL will take the lead on data production and will 
use it to enhance its solar decision support tools. 

 
The main underlying input of the models that will produce 
the new irradiances consists of the 3-hourly visible radiance 
data assembled for the International Satellite Cloud 
Climatology Project (ISCCP [1]) and referred to as B1U 
data.  The B1U data were extracted from the visible channel 
of the geostationary weather satellites that have monitored 
the earth since the early 1980’s. Figure 1 provides a space-
time view of these satellites and their longitudinal coverage 
[2]. 
 
The SUNY satellite model underlying the US NDRDB [3, 
4, and 5] is one of the models considered to produce the new 
irradiance data. This model is capable of directly processing 
the B1U data which are essentially recalibrated visible 
channel data from each geostationary platform.   
 
 
2. METHODS 
 
2.1 Experimental Data 
 
Surface Measurements: The present evaluation covers three 
years -- 2005, 2006 and 2007 – and focuses on the B1U 
pixel locations closest to seven US ground-truth locations 
from NOAA’s SURFRAD network [6]. These sites 
represent a mix of climatic environments (see Table 1). 
 
Satellite data: Both GOES-East and GOES-West data were 
analyzed. The western satellite (GOES-10) stayed 
unchanged throughout the considered period while the 
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4. SUMMARY AND FUTURE WORK  
 
The objective of the project described in this article was to 
undertake an operational evaluation of the SUNY satellite 
irradiance prediction model when using the 3-hourly ISCCP 
B1U data as an input instead of its operational Unidata input 
used to produce the National Solar Resource Data Base 
(NSRDB 
 
The analysis of model performance, benchmarked against 
seven climatically distinct US locations, has shown that the 
B1U data stream can be substituted to the standard Unidata 
stream without any performance degradation for the real 
(three hourly) data points. 
 
It is important to note that the other inputs to the SUNY 
model – the climatological monthly aerosol optical depth 
(AOD), precipitable water (W) and ozone (O3) defining the 
model’s clear sky’s background,  and the location-specific 
ranking process used to correct ground specularity [4] were 
identical for all tested model versions and consisted of the 
current operational input to the model. Since these 
operational ancillary inputs only cover the North American 
window of the SUNY model, other alternate input will have 
to be tested in future work. 
 
Another important next step, now ongoing, is to ascertain 
the performance of the B1U-driven model for other 
satellites and/or regional environments. Table 3 lists the 
BSRN sites [10] which have been selected for the next 
round of testing along with the rationale for their selection  
 
 
5. ACKNOWLEDGEMENT 
 
This work is supported by the NASA Earth Applied Science 
program under the NNH08ZDA001N, Research 
Opportunities in Space and Earth Science, Program Element 
A.18 Decision Support through Earth Science Research 

Results.  The ISCCP B1U data sets were obtained through 
the National Climate Data Center. 
 
The authors are grateful To Ken Knapp from the National 
Climatic Data Center for his review of the manuscript. Ken 
Knapp prepared the B1U data that were analyzed in this 
paper and that will be used for modeling the entire globe. 
 
 
6. REFERENCES 
 
1. Raschke, E., (1988): The International Satellite Cloud 

Climatology Project, ISCCP, and its European Regional 
Experiment ICE (International Cirrus Project). 
Atmospheric Research, Vol. 21, 3-4, 191-201 

2. Knapp, K. R., S. Ansari, C. L. Bain, M. A. Bourassa, 
M. J. Dickinson, C. Funk, C. N. Helms, C. C. Hennon, 
C. D. Holmes, G. J. Huffman, J. P. Kossin, H.-T. Lee, 
A. Loew, and G. Magnusdottir, (2011): Globally 
gridded satellite observations for climate studies. Bull. 
Amer. Meteor. Soc., 92, 893-907. 

3. Perez R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, 
R. George and F. Vignola, (2002): A New Operational 
Satellite-to-Irradiance Model. Solar Energy 73, 5, pp. 
307-317. 

4. Perez R., P. Ineichen, M. Kmiecik, K. Moore, R. 
George and D. Renné, (2004): Producing satellite-
derived irradiances in complex arid terrain. Solar 
Energy 77, 4, 363-370. 

5. George, R., S. Wilcox, M. Anderberg, and R. Perez, 
(2007): National Solar Radiation Database (NSRDB) - 
10 Km Gridded Hourly Solar Database. Proc. ASES 
Annual meeting, Cleveland, OH. 

6. Augustine J. A., J. J. DeLuisi, and C. N. Long, 2000: 
SURFRAD—a national surface radiation budget 
network for atmospheric research. Bull. Amer. Meteor. 
Soc., 81, 2341–2357. 

BSRN Station Time Period Satellite Platform Rationale for Test 
Lauder, New Zealand 2006 MTS-1 Platform, southern hemisphere 

Nauru Island 2002-2003 GMS-5, GMS-9 Equator, platform, platform transition 
Fukuoka, Japan 2005-2006 GMS9, MTS-1 Platform & platform transition 

Sede Boqer, Israel 2006-2007 MET-5, MET-7 Platform & platform transition 
Carpentras, France 2006-2007 MET-7, MET-8, MET-9 Platform & platform transitions 

Florianopolis, Brazil 1995-1996 GOES-8 Southern Hemisphere 



 

7. Perez, R., R. Aguiar, M. Collares-Pereira, D. 
Dumortier, V. Estrada-Cajigal, C. Gueymard, P. 
Ineichen, P. Littlefair, H. Lund, J. Michalsky, J. A. 
Olseth, D. Renné, M. Rymes, A. Skartveit, F. Vignola, 
A. Zelenka, (2001): Solar Resource Assessment – A 
Review. Solar Energy-The State of the Art, Chapter 10 
(pp. 497-575) James & James, London. 

8. Caron J. & B. Domenico, (2006): Unidata's Common 
Data Model and THREDDS Data Server. 
http://www.unidata.ecar.edu 

9. Hof, T.E., Perez, R., Kleissl, J., Renne, D. Stein, J. 
2012. “Reporting of Relative Irradiance Prediction 
Dispersion Error.” American Solar Energy Society 
Annual Conference. May 2012. Denver, Co. 

10. Gilgen H., Whitlock C., Koch F., Müller G., Ohmura 
A., Steiger D. and Wheeler R. (1995):Technical Plan 
for BSRN (Baseline Surface Radiation Network) Data 
Management, Version 2.1 (final). WMO/TD-No. 443, 
WCRP/WMO.

 
 

 

 

 


