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Mills & Wiser (2010) inferred such a trend by looking at one-minute measured data from the low density 
ARM network (Stokes & Schwartz, 1994). Perez et al. (2011) analyzed the same measured ARM network 
data but augmented the network’s density by building one-dimensional high density virtual networks around 
each station. They derived a well-defined time-scale-distance relationships for 20 seconds to 15 minute 
fluctuations. Hoff & Perez (2011), looked at longer time scales (1-4 hours) for extended geographic areas 
using satellite derived data, confirming the solid trends but noting  regional differences likely traceable to 
local cloud transit speed. They posited that a correlation function linking distance, time scale and cloud 
speed would likely be applicable down to scales of seconds. 

In this paper, we take advantage of a new modeling technique capable of generating high resolution (1 km) high 
frequency (one-minute) irradiance data from geostationary satellites to complement and unify the above 
findings. The results show that a strong, predictable and site-independent site-pair correlation relationship exists 
between distance, considered fluctuation time scale, and local mean cloud transfer speed. 

2. Variability Metrics 

The non-deterministic component of solar resource variability is the results of short-term weather effects: 
passing and evolving cloud fields.  The clear sky index Kt* defined as the ratio between global horizontal 
irradiance GHI and clear sky global irradiance GHIclear is largely independent  of solar geometry and is used to 
quantify this non-deterministic variability. 

Hoff and Perez (2010) have previously quantified variability as the standard deviation of the time series of 
changes in Kt* from one time interval Δt to the next: σ(Δkt*Δt). This metric is retained for the present 
investigation. 

3. Satellite-Derived One-Minute Irradiance Data 

3.1. Methodology 
The GOES geostationary satellites produce data on a half-hour basis with a ground resolution of 1 km at nadir 
for the visible channel. This channel is the main input to irradiance models such as the model of Perez et al. 
(2002) used in SolarAnywhere (2011).   

The one-minute data are generated from the  half-hour satellite-modeled irradiances by applying a methodology 
developed for cloud motion forecasts (Heinemann, et al., 2006, Perez et al., 2010) to points of time between 
satellite frames. Cloud motion is determined from two consecutive images; the motion assigned to each image 
pixel is the one that minimizes the local cloud pattern difference between the two images. Because they are 
initiated from known cloud field structures, cloud motion-based forecasts have been found to perform better 
than numerical weather prediction forecast models up to 4-5 hours ahead (Perez et al., 2010). Beyond this time 
horizon, performance degrades because cloud speeds evolve over time and space, and because the method does 
not account for cloud formation or cloud dissipation. 

The cloud motion forecast methodology is applied here to simulate evolving cloud patterns at any time between 
two consecutive satellite images at time t0 and t1, respectively. Forward forecast is applied to the t0 image, while 
backward forecast is applied to the t1 image by reversing motion vectors. The resulting cloud field at time ti 
(with t0 < ti <t1) is a weighted average between the forward and backward forecasts.  The achievable time 
resolution Δtlimit is a function of the image’s spatial resolution, Δx, which defines the size of the cloud structures 
that can be captured to determine variability at a given time scale, and of the cloud speed CS: 

Δtlimit  = Δx / CS       (eq. 1) 

For this study we use the native visible channel spatial resolution of ~ 1 km, allowing us to push the temporal 
resolution down to near one-minute for cloud speeds approaching 60 km/h.  For lower speeds at that frequency, 
the one-minute generator should underestimate variability and overestimate site pair correlation -- however 
both variability and correlation observed at these low speeds can be corrected as discussed below. 

Figure 2 illustrates 31 satellite-derived clear sky index frames over a ~ 200 km x 150 km region in northern 
California. The first and last frames are derived from actual satellite images while all the intermediate frames 
are produced using the methodology outlined above.  
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4.1 Correlation of Δkt* as a Function of Distance 
Thirty six uniformly distributed high resolution data points were selected within the central area of each region 
– each central area represents 2x2 degrees for the five large regions and 1x1 degrees for the small Hawaii 
region.  

The correlation of the Δkt*time series  between each of the 36 selected points and a random sample of all its 
possible neighbors within a 50 km radius was individually calculated for each month and each region --  the 
random sampling of neighbors  reduced the number  station pairs analyzed per region from 280,000 possible 
pairs down to a manageable 28,000. The random selection process was adjusted so as to keep the number of 
pairs analyzed within any particular distance range nearly constant. 

Figure 6 illustrates observed site pair correlations as a function of distance and Δt for one sample month in each 
region analyzed. The considered Δt intervals range from one minute to one hour. The familiar trends previously 
noted by Hoff & Perez (2011), Perez et al. (2011), and Mills & Wiser (2010) based upon different empirical 
evidence (respectively  hourly satellite data, virtual networks and low resolution networks) are qualitatively 
reproduced in the present analysis. In addition, it is clearly apparent that the rate of correlation decrease as a 
function of distance depends upon the prevailing regional cloud speed as had been inferred by Hoff and Perez’s 
analysis of hourly satellite data (2011). The influence of cloud speed becomes more noticeable as Δt increases – 
which may explain why this effect was noted in Hoff & Perez analysis as they considered Δt’s ranging from 
one hour to 4 hours and not in the virtual network analysis that considered Δt’s ranging from 20 seconds to 15 
minutes 

The slight negative correlation noted by Perez et al. in the virtual network analysis (2011), and partially visible 
in high resolution network data (Hoff & Perez, 2011) is not reproduced through this analysis. The main causes 
of the observed negative correlation minimum were likely the one-dimensional nature of the virtual network 
and the assumed conservation of cloud structures.  

We made no attempts at observing the influence of cloud speed direction vs. the considered distance on the 
observed correlation trends  -- a slight, but noticeable variation to this effect has been noted by Hinkelman et al. 
(2011) which may be materialized here as the scatter around the observed trends in Fig. 6. 

All the trends observed at all time scales and sites converge towards zero asymptotically with a convergence 
distance increasing with both Δt and cloud speed. Because the correlation zero cross-over noted in the virtual 
network analysis does not occur here, let’s consider the 20% crossover threshold as an effective quantifier of 
the distance where the Δkt* time series at two locations are effectively uncorrelated. Figure 7 reports this 
effective decorrelation distance, xedd, as a function of mean monthly cloud speed and Δt for each of the 20 site-
months analyzed.  

As conjectured above, the points reported in Figure 7 where Δt is below Δtlimit should overestimate the 
crossover distance. This effect is clearly apparent in Figure 8; according to Hoff and Perez’s definition of the 
dispersion factor (2010), the station distance at any given correlation level divided by Δt and by the cloud speed 
should be a constant.  The points where Δt << Δtlimit are above the other data points, increasingly so as Δtlimit /Δt 
increases. However, it is possible to use this observation and Hoff & Perez’s dispersion factor definition  to 
correct the concerned data points by bringing them to the level of the mean of all other points where Δt > Δtlimit. 
Doing so allows us to derive Figure9 identifying the effective 20% decorrelation distance as a function of 
prevailing cloud speed and Δt, and to propose the following equation for this effective distance: 

xedd  = 1.5  Δt  CS         (eq. 2) 

Figure 10 compares the application of equation (2) to the preliminary relationship identified in the virtual 
network analysis (Perez et al., 2011) 

Further, recalling that xedd correspond to 20% correlation threshold, and assuming, based on the present 
empirical evidence, that correlation decreases exponentially with distance, it is possible to use equation (2) to 
estimate any station pair correlations, Cpair, as a function of their distance, x, the fluctuation time scale Δt and 
the cloud speed CS per equation (3): 

 Cpair = exp ( x ln2 / 1.5 Δt CS )  (eq. 3)  
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Fig. 9 : Corrected effective 20%-threshold decorrelation distance 
as a function of mean monthly cloud transfer speed for each region/month analyzed 

 
 

 
Figure 10: Comparing application of equation (2) for different cloud speeds 

 against the virtual network derived trend from Perez et al., 2011 
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5. Conclusions  

 

In this article we have presented experimental evidence showing that the short-term variability correlation 
observed between two locations is a predictable function of their distance, the considered fluctuation time scale 
and the local cloud speed. This experimental evidence was used to propose a simple model relating correlation 
to all three parameters.  

As explained by Hoff and Perez, 2011, this relationship can be used, in conjunction with satellite-derived cloud 
motion vectors (see Perez et al., 2010) to build a correlation matrix for any arbitrarily deployed fleet of PV 
installations, and therefore to estimate their combined variability at any time scales. 
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