
Several studies have shown that the
availability of solar power plants often is
high during times of peak electrical
demand when peaks occur in summer
and are driven by day-time commercial
air conditioning. These peaks are intensi-
fied during heat waves, which are fueled
by solar gain. Thus, the resource creating
the demand also can be used to meet
that demand and provide local grid
decongestion. This relieves load pockets
and transmission bottlenecks, providing
the equivalent of firm peaking capacity,
i.e., effective capacity.

Effective capacity can be verified tan-
gibly in the case of dispersed PV. For
instance, the demand-response program
run by the New York Independent Sys-
tem Operator (NYISO) is designed to
provide the equivalent of peaking capaci-
ty via load curtailment and user-sited
power generation. When dispersed PV
generation is available, the program can
be reduced substantially while maintain-
ing the same degree of peak reduction
effectiveness.1 When the power grid is
under stress due to high summer
demand, high power transfers, and reach-
es the point of rolling blackouts, the PV
resource  generally is close to ideal. A case
in point is the Aug. 14, 2003, Northeast
blackout, which could have been pre-
vented with less than 500 MW of PV dis-
persed over the entire northeastern Unit-
ed States, keeping all unattended failures

from feeding into one another to the
point of regional outage cascade.2

This non-traditional effective capaci-
ty credit can be quantified by: 1) identi-
fying and comparing different metrics
that have been proposed and sometimes
used by the utility and renewable energy
industries; 2) comparing these metrics
through experimental case studies; and 
3) reviewing the results of a consensus
building effort involving the utility, 
solar and research industries.

Effective Capacity Metrics

Simple metrics can be estimated directly
from the knowledge of load demand and
power generation history (see Figure 2).
These fall into four broad categories.

Metrics can be based on the concept
of loss-of-load probability. Utilities used
effective load-carrying capability to
quantify the capacity of their power 

generation units before the strengthening
of continental/regional interconnectivity.
The methodology still was applied at
Pacific Gas and Electric Co.3 in the
1980s. As defined by Garver,4 the effec-
tive load-carrying capability of a power
plant represents its ability to increase the
total generation capacity available on a
local grid (e.g., a contiguous utility’s serv-
ice territory) without increasing its loss-
of-load probability. This is determined by
calculating the loss-of-load probability of
the considered generating resource (here
PV) and comparing it to an ideal equiva-
lent resource with a constant output.

An analysis of load-duration curves
consists of two metrics. One is load-dura-
tion capacity, defined as the mean relative
PV output for all loads greater than the
utility’s peak, minus the installed PV
capacity. The other is demand-time 
interval matching, details of which are
provided in technical reports.5 Basically,
the demand-time interval matching
capacity over a given evaluation period
represents the worst-case output of the
PV system by subtracting the PV system
output from the load, i.e., the difference
between the peak of the load duration
curves with and without PV generation.

Load metrics quantifying the syner-
gies between short term storage/load
control and PV generation use solar load
control capacity to answer a basic ques-
tion: Given a certain amount of cumula-
tive demand response available to a utili-
ty, how much more guaranteed load
reduction is possible if PV is deployed?
This also can be calculated on minimum
buffer energy storage capacity, using
minimum storage requirements,6 rather
than cumulative demand response. 

Using predefined peak demand win-
dow metrics, the time-season window
method calculates capacity credit across
predefined hours, months, or seasons. 
It is cited often as the ERCOT method,
named after the practice to assign capaci-
ty credit to wind generators operating in
the ERCOT regional reliability council, 
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Photovoltaic (PV) power generation is an intermittent, non-dispatchable
resource generally considered as energy-only with no capacity credit. However,
there is ample evidence that solar energy reliably is available at peak demand

time when loads are driven by day-time commercial air conditioning, and can 
contribute effectively to increasing the capacity available on a regional grid.
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a practice also used by the MAPP grid
operator. There are several possible varia-
tions on the calculation. The ERCOT
method predefines a peak demand time
frame—e.g., May through October and
10 a.m. to 6 p.m.—and defines capacity
as the probability a minimum output is
likely to occur (8 percent in the case of
ERCOT). 

Capacity Drivers

The main driver of effective capacity is
the relationship between load demand
and PV supply. All of the above metrics
can be calculated by analyzing concur-
rent time series of PV generation data
and load data. In addition to the supply-
demand relationship, there are two con-
textual items that also have relevance on
effective capacity. 

PV grid penetration represents the
amount of PV installed on a given grid,
quantified as the percentage ratio
between the deployed PV peak output
and the considered grid’s peak. Because
of its potential as a peak shaver, penetra-
tion is highly relevant to PV’s capacity—
the more PV penetrates a grid, the less it
can be solely targeted to serve peak
demand, and hence the less effective it
becomes at providing capacity (see Figure
3). All the considered metrics account for
the effect of penetration, except for the
time-season window method, 
which  only can provide a probability 
of availability in a given time window,
independent of how much PV is
deployed. In the three case studies cited,
PV penetrations range up to 20 percent
of peak loading.

Time frequency also is relevant. But it
is necessary only to look at an hourly fre-
quency for load and PV generation data,
not any sub-hourly variability. This is jus-
tified because: 1) dispersed PV generation
tends to eliminate short term variability;
and 2) very high frequency variability is
an ancillary service issue rather than a
capacity issue. In addition, some of these
metrics methods absorb short-term fluc-

tuations (in particular, minimum buffer
energy storage and solar load control) and
would lead to identical results regardless
of the considered time frequency.

Three Case Studies

Following is an analysis of the hourly PV-
load relationship and extracted capacity
metrics for three distinct utilities: Neva-
da Power (NP), Portland General (PG)
and Rochester Gas and Electric (RG&E)
(see Figure 4). 

NP is a metropolitan utility in an arid
western state, endowed with a consider-
able solar resource and a large commercial

air conditioning demand. NP is summer-
peaking by a wide margin (with a sum-
mer-to-winter peak ratio approaching 2).
RG&E serves a medium-sized industrial
city in upstate New York, where cloudy
conditions are frequent. It also peaks in
summer, driven by daytime industrial
and commercial air conditioning but
much less than NP (summer-to-winter
peak ratio = 1.3). Finally PG serves the
city of Portland, Ore. and vicinity. It was
a winter-peaking utility until recent years,
but is now becoming marginally summer
peaking due to increased air conditioning
use and a general climatic trend to
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warmer summers.
Using experimental load data for each

utility for year 2003, site-time coincident
PV outputs were generated via simula-
tion of satellite-derived irradiance data.7

Stationary flat-plate PV installations
were optimized for mid-afternoon pro-
duction (30 degrees tilt and south-west
orientation).

Upon comparing these sets of met-
rics, the most striking observation is that
all the metrics that account for PV pene-
tration provide comparable measures of
capacity. Only the time-season window
leads to different results. With no
dependence on penetration, the time-
season window is unreflective of any
load-PV relationship. This underestima-
tion is understandable because within an
arbitrarily predefined peak time window,
there are many occurrences when the
load is small and when reliance on PV
output is not critical. It is thus arguable
that the time-season window is not an
appropriate measure of PV capacity
credit, no more than the capacity factor
should be a measure of capacity credit.

Selecting between the other metrics is
not a critical choice, because they pro-
vide comparable results. By bundling
minimal control/storage with genera-
tion, both solar load control and mini-
mum buffer energy storage metrics elimi-
nate the notion of risk associated with a
non-dispatchable resource, introducing
the notion of firm power delivery (100
percent reliability). The effective load-
carrying metric is a slightly more conser-
vative measure of capacity. Demand time
interval matching shows more disconti-
nuity than the others when plotted
against penetration, because it is based on
one single critical data point at the top of
the load duration curve, and this point
may shift significantly depending on the
size of PV relative to the grid it serves.

Reaching Consensus

There are two opposite viewpoints
regarding PV capacity credit. In gen-
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»

ELCC—Effective Load Carrying Capability
SLC—Solar Load Control Capacity
TSW—Time/Season Window
LDC—Load Duration Capacity
MBESC—Minimum Buffer Energy Storage Capacity
DTIM—Demand-Time Interval Matching 



48 PUBLIC UTILITIES FORTNIGHTLY FEBRUARY 2009 www.fortnightly.com

eral, utilities consider PV to be an inter-
mittent, energy-only source of electricity,
while the solar industry regards it as a
demonstrably reliable peaking resource.
Presentations and arguments for each
viewpoint were exchanged at the PV
Capacity Workshop during the Solar
Power 2007 conference8 for a mix of util-
ity, government and solar industry repre-
sentatives.

After discussing issues directly and
indirectly related to measuring capacity
credit—the monetary value of capacity,
emergency planning, capacity planning,
ancillary services, the cost of PV, plan-
ning for future penetration of PV, the
question of ownership, what happens 

at very high penetration levels—the
workshop focused on capacity calcula-
tion methodology, ending with a straw
poll on metric appropriateness and 
preferences. 

Effective load-carrying capacity was
the preferred method overall, followed
by the solar load control and minimum
buffer energy storage metrics (combined
because of their operational similarity).
There was a clear distinction, however,
between utility and solar industry prefer-
ences, with utilities preferring the more
familiar effective load-carrying capacity,
while the solar industry preferred the
methodologies exploiting control-stor-
age synergies and eliminating the notion

of risk associated with non-dispatchable
PV generation.

This choice is consistent with agreed-
upon methodology for other non-dis-
patchable resources. For example, the
utility-wind industry9 relationship shows
a fair degree of acceptance for effective
load-carrying capacity.

Appropriate capacity credits for PV
might determine whether PV power
generation will continue to be consid-
ered an energy-only resource. But
research demonstrates that metrics can
quantify the effective capacity of PV,
providing the information utilities need
to integrate significantly more solar ener-
gy into their resource portfolios. F »

Solar Power Generation:
There are two basic categories
of solar energy technologies:
Those that are end-use specif-
ic, such as space heating or
domestic hot water production,
and those that produce electric-
ity. The two leading electricity
generating technologies are
concentrating solar power
(CSP) and photovoltaics (PV).
Whereas CSP operation follows

the traditional utility model of
centralized generation, the PV
resource, because of its modu-
lar nature can be highly decen-
tralized. The equivalent of a
large power plant can consist of
numerous multiple-size instal-
lations dispersed over a utility
or substation service area.

The Solar Resource: The
solar resource is abundant and
could supply all of the planet’s

energy requirements many
times over. However it is locally
intermittent due to weather, and
daily and seasonal cycles. Daily
and seasonal cycles are pre-
cisely predictable, but weather-
driven intermittencies are less
so; these fluctuations may span
from a few seconds (a passing
cloud) up to several days 
(a passing weather system).
However, short-term fluctua-
tions can be  reduced consider-
ably in practice by bundling
individual PV plants, much like

the bundling of individual utility
customers tends to smooth
electrical demand (see Figure
1).

Capacity Factor: The aver-
age output of a power plant in
relation to its rating is its capac-
ity factor. Because solar plants
only operate during daytime
hours and are affected by
weather, their capacity factor is
low, typically ranging from 15
percent to 25 percent in the
United States. As a measure of
average energy output, it is only
loosely related to the issue of
PV capacity credit.

Capacity Credit: A plant’s
capability to generate power on
demand and contribute to the
generating capacity available
on a regional power grid deter-
mines its capacity credit. The
capacity credit of a power plant
generally is assessed at a frac-
tion of its rated output, account-
ing for the plant’s forced outage
rate. Because of intermittency,
solar power plants cannot guar-
antee output on demand and
carry no capacity credit in this
traditional sense, unless oper-
ated with built-in backup or
storage.–RP

SOLAR MORPHOLOGY
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tions dispersed over approximately 100 square miles illustrates how system-wide distribution greatly
reduces variability in solar energy.
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Longer term it becomes a significant issue for us, in terms
of development and acquisition of new facilities.

The volatility in the economy makes projecting what will
happen six to 12 years from now more difficult. Building a
power plant has a multi-year lead time. What we do in the
resource-planning group is look at different areas of the econ-
omy, try to understand the drivers as best we can and under-
stand the scenarios. Our resource planning group takes that
and develops options in resource acquisition, planning what
steps we’ll take to accommodate load, higher or lower than
what we’re projecting. Having those options in our planning
process allows us to make sure we’re not trapped and acquiring
too much or too little of the supply resource.

Fortnightly: What do you see as the most important political
and regulatory risks facing Xcel? How are you positioning to
address them?

Dybalski: I think the biggest risks we see for regulation are
related to climate change and overall energy policy. This is true
at the federal and state levels. We’ve expected this for some
time, so for instance we’ve taken steps to add considerable
amounts of wind generation to our mix. 

The risk isn’t necessarily the need to reduce CO2 and things
like that, but the way it’s done and the potential that regulations
could change. We could go down one direction—for example
to meet a renewable portfolio standard that calls for X percent of
wind generation—and three or four years into it the regulations
could change out from under us. That potentially changes what
investments we have to make, and that could change the whole
cost structure, which would affect our customers. 

From a financial hedging perspective, that would be diffi-
cult to manage. Realistically, the volumes and costs are too large.
You can trade CO2 credits and those kinds of things, but [finan-
cial hedging isn’t possible] for the magnitude of political risks
that we’re talking about. It goes to the regulatory and political
arena to manage these risks. 

We have a vice president of environmental policy whose role
is to work with regulatory bodies, legislators and political par-
ties to ensure we have a seat at the table, and policies are devel-
oped that we understand. We’re pretty certain there’s going to
be regulation and limits on CO2. That’s fine, we can deal with
that once we know what those regulations are and we know
they’re unlikely to have material changes through time. 
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